HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS EXTENSION 1 2009

YEAR 12 TRIAL HSC EXAMINATION

EXAMINERS ~ H. CAVANAGH, D CRANCHER, J DILLON, G HUXLEY.

GENERAL INSTRUCTIONS

- Reading Time 5 minutes.
- Working Time 2 hours.
- Attempt all questions.
- Questions are of equal value.
- All necessary working should be shown in every question.
- This paper contains seven (7) questions.
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators and MathAids may be used.
- Each question is to be started in a new answer booklet. Additional booklets are available if required.
- This examination must **NOT** be removed from the examination room

STUDENT NAME:	
STUDENT NUMBER	:

(a) Find the acute angle, to the nearest degree, between the lines

2

$$y = 5 - x$$
 and $y = \frac{3}{2}x + 5$.

(b) (i) Show that (x-2) is a factor of x^3-3x^2+4

1

(ii) Express $x^3 - 3x^2 + 4$ as a product of three linear factors

2

(c) If $y = \log_{\frac{1}{a}} \left(\frac{1}{N} \right)$, where a > 0 and N > 0, show that $y = \log_a N$

2

(d) The point (0, 4) divides the interval from (a, b) to (b, a) internally in the ratio 3: 1. Find the values of a and b.

3

(e) Find the Cartesian equation of the locus of a point P(x, y)

2

where
$$x = 2\cos\theta$$
 and $y = \frac{1}{2}\sin\theta$

(a) Find $\lim_{x \to 0} \frac{\sin x}{5x}$

1

- (b) A particle moves in a straight line so that its velocity, v, in minutes per second at time t is given by v = 4 2t. Initially, the particle is at x = 1.
 - (i) Find the displacement x of the particle as a function of t.

1

(ii) When is the particle at rest and what is its acceleration at that time?

2

(c) Heat is applied to a metallic disc for t seconds. Its area, $A ext{ cm}^2$, increases at a rate given by:

$$\frac{dA}{dt} = t^2 - 2t + 1$$

(i) Find the rate at which the area of the metallic disc is increasing at the end of the third second.

1

(ii) Before heat is applied the area of the metallic disc is 10 cm².
 Heat is then applied to the metallic disc for 3 seconds.
 What is the area of this disc at the end of three seconds?

2

(d) Given that $0 < x < \frac{\pi}{4}$ prove that : $\tan\left(\frac{\pi}{4} + x\right) = \frac{\cos x + \sin x}{\cos x - \sin x}$

3

(e) Let $f(x) = \log_e [(x+2)(x-4)]$

2

What is the domain of f(x)?

(a) In how many ways can the letters of the word SUCCESS be arranged?

All letters must be used.

2

(b) The staff in an office consists of 4 males and 7 females.

2

What is the probability that a randomly chosen committee of 5 staff can be formed which contains exactly 3 females?

(c)

O is the centre of the circle ABP. $MO \perp AB$. M, P and B are collinear. MO intersects AP at L.

(i) Prove that A, O, P and M are concyclic.

2

(ii) Prove that $\angle OPA = \angle OMB$.

2

(d) (i) Show that $P(x) = x^3 - x^2 - x - 1$ has a zero between 1 and 2.

1

(ii) Take x = 2 as a first approximation and use Newton's method to calculate a second approximation.

2

(iii) Explain why x = 1 was not a suitable first approximation in this case.

(a)

The diagram shows the graph of the parabola $x^2 = 4y$ and also the tangents at $T(2t, t^2)$ and $P(2p, p^2)$. The tangents intersect at K.

- (i) Prove that the equation of the tangent at T is $y = tx t^2$
- (ii) Show that the coordinates of the point K, the point where the tangents at T and P intersect, are (p+t, pt).
- (iii) The angle *TKP* is a right angle.

 Show that the locus of *K* is a straight line.
- (b) Solve the inequation: $\frac{x}{x-3} < 4$
- (c) The polynomial $P(x) = 6x^3 7x^2 + ax + b$ has a zero at x = -1. The remaining zeros are reciprocals.
 - (i) By examining the product of the three roots, determine the values of b, and hence of a.
 - (ii) Find all zeros of P(x).

- (a) Use mathematical induction to prove that, for every positive integer n, $13 \times 6^n + 2$ is divisible by 5.
- 3

(b) Differentiate with respect to x: $xe^{\sin x}$

2

- (c) The curve $y = \sin 2x$ and the line $y = \frac{4x}{\pi}$ intersect at x = 0 and $x = \frac{\pi}{4}$. Find the area bounded by the curve $y = \sin 2x$ and the line $y = \frac{4x}{\pi}$ in the first quadrant. (Answer in terms of π).
- 2

- (d) Find the exact volume of the solid formed when the area between the curve $y = \log_e x$ and the y-axis is rotated about the y-axis between y = 0 and y = 3.
- 2

(e) Use the substitution $u = \sqrt{x}$ to evaluate $\int_{0}^{3} \frac{dx}{\sqrt{x}(1+x)}$

3

Find the exact value of $\int_{0}^{1} \frac{dx}{\sqrt{2-x^2}}$. (a)

2

State the domain and range of the function $y = 2\sin^{-1}(3x)$. (b) Sketch the graph.

3

2

- If $y = \cos^{-1}\left(\frac{1}{x}\right)$ for $0 \le y \le \frac{\pi}{2}$, show that: $\frac{dy}{dx} = \frac{1}{x\sqrt{x^2 1}}$
- Consider the function $f(x) = e^{-x} e^{x}$ (d)
 - (i) Show that f(x) is decreasing for all values of x.

1

Show that the inverse function is given by (ii)

$$f^{-1}(x) = \log_e\left(\frac{\sqrt{x^2+4}-x}{2}\right).$$

3

Hence, or otherwise, solve $e^{-x} - e^x = 6$ (iii)

1

Give your answer correct to two decimal places.

(a) (i) Show that
$$\int_{0}^{\frac{\pi}{4}} \cos^2 x \, dx = \frac{\pi + 2}{8}$$

(ii) The region under the curve $y = \cos x + \sec x$, above the x-axis, between x = 0 and $x = \frac{\pi}{4}$, makes a revolution about the x-axis.

Show that the volume traced out is $\frac{5\pi(\pi+2)}{8}$ units³.

(b)

A pole, OT, of length l metres, stands on horizontal ground. The pole leans towards the east, making an angle of θ with the vertical.

From P, d metres south of O, the elevation of T is α

(i) Find expressions, in terms of l and θ , for OM and MT.

2

(ii) Prove that $PM = l \cos \theta \cot \alpha$.

2

(iii) Prove that
$$l^2 = \frac{d^2}{\cos^2\theta \cot^2\alpha - \sin^2\theta}$$
.

2

(iv) Find the length of the pole, to the nearest metre, if d=25, $\theta=20^{\circ}$, $\alpha=24^{\circ}$.

1

		1 Trial HSC 200	

. Question No. 1 Solutions and Marking Guidelines

Outcomes Addressed in this Question

PE3:solves problems involving polynomials and parametric representations
H3:manipulates algebraic expressions involving logarithmic and exponential functions
H5:applies appropriate techniques from the study of geometry and trigonometry to solve problems

Outcome	Solar	tions	
Q1(a)	$y = 5 - x$ and $y = \frac{3}{2}x + 5$ $m_1 = -1$ $m_2 = \frac{3}{2}$	$\tan \theta = \left \frac{m_2 - m_1}{1 + m_1 m_2} \right $ $= \left \frac{\frac{3}{2} + 1}{1 - \frac{3}{2}} \right $ $= 5$	Marking Guidelines 2 marks: Fully correct solution 1 mark: Attempts application of formula with correct gradients. OR arithmetic error in gradients, correct working for angle.
Q1(b)(i) PE3	(x-2) is a factor of P(x) = P(2) =	$\frac{\theta = 79^{\circ}}{(-2)^{3} - 3x^{2} + 4 \text{ if } P(2) = 0}$ $2^{3} - 3(2)^{2} + 4$	I mark
Q1(b)(ii)	= (0 is a factor.	Correct use of factor theorem to prove the given result, or correct division.
PE3	$ \begin{array}{r} x^{2} - x - 2 \\ x - 2 \overline{\smash)} x^{3} - 3x^{2} + 4 \\ \underline{x^{3} - 2x^{2}} \\ -x^{2} + 4 \\ \underline{-x^{2} + 2x} \\ -2x + 4 \\ \underline{-2x + 4} \\ \vdots \end{array} $	$P(x) = (x-2)(x^2 - x - 2)$ $= (x-2)(x+1)(x-2)$ $= (x-2)^2(x+1)$	2 marks Correctly divides the given polynomial, and factorises the resulting quotient to show the 3 linear factors. OR Factorises correctly by inspection. 1 mark Substantial progress towards the correct solution
Q1(e) 113	$y = \log \left(\frac{1}{a}\right)^{y} = \frac{1}{N}$ Take recipro $a^{y} = N$		2 marks: Fully correct solution 1 mark: Sufficient progress towards correct result
Q1(d) PE3	$\therefore y = \log x$	$a_n N$ simultaneously, $a=6, b=-2$	3 marks Correctly produces 2 equations, and correctly solves simultaneously. 2 marks
Q1(c) PE3	$x = 2\cos\theta$ $y = \frac{1}{2}\sin\theta$ $\Rightarrow \frac{\cos\theta = \frac{x}{2}}{\sin\theta = 2y}$ Since $\cos^2\theta + \sin^2\theta = 1$		Substantial progress towards the correct solution I mark indicates some knowledge of the process of division of an interval.
	$\frac{x^2}{4} + 4y^2 = 1$ $x^2 + 16y^2 = 4$		2 marks: Fully correct solution 1 mark: Some progress towards correct result, including use of the Pythagorean result.

Year 1 Questi	2 Extension I Mathematics on No. 3 Solutions and Marking Guidelines	Trial HSC 200
	Outcomes Addressed in this Ouestion	
PE3	solves problems involving permutations and combinations, incour	alities, polynomials, circle
T	geometry and parametric representations	-
 	Solutions	Marking Guidelines
(a)	Number of ways = $\frac{7!}{3!2!} = 420$	Award 2 for correct solution.
	·	Award 1 for attempting to use an appropriate process.
(b)	Number of unrestricted committees of $5 = \begin{pmatrix} 11\\5 \end{pmatrix}$	Award 2 for correct solution.
	Number of committees of 3 females = $\binom{7}{3}\binom{4}{2}$	Award 1 for attempting to use an appropriate process.
***************************************	Probability = $\frac{\binom{7}{3}\binom{4}{2}}{\binom{11}{5}} = \frac{5}{11}$	
7) (Let $\angle PAO = \theta$ $\angle APB = 90^{\circ}$ (angle in a semi-circle)	Award 2 for correct solution.
	∴ $\angle ABP = (90 - \theta)^{0}$ (angle sum of $\triangle ABP$) ∴ $\angle BMO = \theta$ (angle sum of $\triangle BMO$) ∴ $\angle OAP = \angle BMO$ ∴ $\angle OPM$ is a cyclic quadrilateral (OP subtends equal angles at A and M) ∴ A , O , P , and M are concyclic	Award 1 for substantial progress towards solution.
	ii) $\angle OPA = \theta$ (angles opposite equal sides OP and OA) $\angle BMO = \theta$ (above)	Award 2 for correct solution.
***************************************	∴ ∠OPA = ∠OMB	Award 1 for substantial progress towards solution.
) (i) $P(1) = 1 - 1 - 1 - 1 = -2$ P(2) = 8 - 4 - 2 - 1 = 1 ∴ Since $P(x)$ is a continuous function and the sign changes, there must be a root between 1 and 2.	Award I for correct solution.
(i	i) $P'(x) = 3x^2 - 2x - 1$ P(2) = 1 and $P'(2) = 7$	Award 2 for correct solution.
	$\therefore x_2 = 2 - \frac{1}{7} = 1\frac{6}{7}$	Award 1 for substantial progress towards solution.
(1	ii) $P'(1) = 0$ This means that $x = 1$ is a stationary point \therefore Newton's method will fail.	Award 1 for correct solution

Vear 12 Mathematics E	xtension 1 Task 4 Trial HSC 2009	
Question No. 2	Solutions and Marking Guidelines	
Question	Outcomes Addressed in this Question	

H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems

outcome	Solutions	Marking Guidelines
Q2.		
_	$\frac{1}{5}$	I mark correct answer
H5	5	• *******
•	(b) (i)	
H5	$x = \int (4 - 2t) dt$	
	$=4t-t^2+C$	
	when $x = 1, t = 0 \Rightarrow C = 1$	
	$x = 4t - t^2 + 1$	I mark correct answer
	(ii)	
	The particle is at rest when $v = 0$	
	0 = 4 - 2t	
	0=2(2-t)	
	t=2	I mark for correct time
		particle is at rest
	dv	
	$a = \frac{dv}{dt} = -2$	
	· · · · · · · · · · · · · · · · · · ·	I mark for correct
	The particle is at rest after 2 seconds and has constant	acceleration at that time.
	acceleration of $-2m/s^2$.	
	(-)	
H5	(c) (i)	
	At t = 3	
	$\frac{dA}{dt} = (3)^2 - 2.(3) + 1$	***
	dt = 4	***
	The rate at which the disc is increasing is $4cm^2/s$	1 mark for correct answe
	The rate at which the disc is increasing to dome.	I mark for contact answer

Year 12	E	xtension 1 Mathematics	Trial HSC 200
Question !		ons and Marking Guidelines	
PE3 solv	es problems involving permuta	es Addressed in this Question	disting and a second of the site of
geo	metry and parametric represen	tations	innes, polynomials, circle
	Soluti		Marking Guidelines
(a) (i)	$y = \frac{x^2}{4}$		Award 2 for correct solution.
	$y' = \frac{x}{2}$		Award 1 for attempting to use an appropriate process.
	At $(2t, t^2)$ $y' = t = m_{tangent}$		
	: Equation of tangent is		
	$y-t^2 = t(x-2t) = tx-2t^2$		
	$\therefore y = tx - t^2$		
(ii)	Equation of tangent at P is $y = px - p^2$		Award 2 for correct solution.
	At point of intersection		Award 1 for attempting to
	$px - p^2 = tx - t^2$		use an appropriate process.
	$(p-t)x = p^2 - t^2 = (p-t)(p$	+1)	
***************************************	$x = p + t \ (\because p \neq t)$		
April 1997	` '		
	Sub. into $y = px - p^2$		
	$y = p(p+t) - p^2 = pt$		-
	Intersect $(p+t, pt)$		
(iii)	If $\angle TKP = 90^{\circ}$		Award 1 for correct
7	$m_{TK} \times m_{PK} = -1$		solution.
and the same of th	$\therefore t \times p = -1 \implies pt = -1$		
	\therefore Locus of K is $x = p + t$, $y = -$	-1	
	\therefore Locus of K is the straight line.	ne y = -1.	
<u>x</u>	- A		
x-3	4		Award 3 for correct
x(x-	$3) < 4(x-3)^2$		solution.
(x-3)	$3) < 4(x-3)^{2}$ $(x-4(x-3)) < 0$ $(12-3x) < 0$		Award 2 for substantial
(2	(12 - 2)		progress towards solution.
			Award 1 for limited
(x-3)	0(4-x)<0		progress towards solution
∴ x <	3 or x > 4	•	-
İ			-
-			
			francis and the second

(c)
$$(i) \qquad P(-1) = 0 \Rightarrow 6(-1)^3 - 7(-1)^2 + (-1)\alpha + b = 0$$

$$\therefore b - a = 13 \qquad (1)$$

$$\text{Roots are } -1, \alpha, \frac{1}{\alpha} \Rightarrow -1 \times \alpha \times \frac{1}{\alpha} = -\frac{b}{6}$$

$$\therefore \frac{b}{6} = 1 \Rightarrow b = 6$$
Substitute into $(1) \Rightarrow a = -7$

$$(ii) \qquad P(x) = 6x^3 - 7x^3 - 7x + 6$$

$$-1 + \alpha + \frac{1}{\alpha} = -\frac{7}{6} = \frac{7}{6}$$

$$\alpha + \frac{1}{\alpha} = \frac{13}{6}$$

$$\alpha^2 + 1 = \frac{13}{6} \alpha$$

$$6\alpha^2 - 13\alpha + 6 = 0$$

$$(3\alpha - 2)(2\alpha - 3) = 0$$

$$\therefore \alpha = \frac{2}{3} \text{ or } \alpha = \frac{3}{2}$$

$$\therefore \text{ Zeros are } -1, \frac{2}{3}, \frac{3}{2}.$$
Award 2 for correct solution.

Award 1 for substantial progress towards solution.

Award 2 for correct solution.

Year 12 Mathematics	Extension 1 Task 4 Trial HSC 2009	
Ouestion No. 5	Solutions and Marking Guidelines	
Quodicarriore	Outcomes Addressed in this Question	

- determines the derivative of a function through routine application of the rules of differentiation uses multi-step deductive reasoning in a variety of contexts uses techniques of integration to calculate areas and volumes

IE6 dete Outcome	ermines integrals by reduction to a standard form through a given Solutions	Marking Guidelines
PE2	5. (a)	
	Let $S_n: 13 \times 6^n + 2$ is divisible by 5	
	i.e. $S_n: 13 \times 6^n + 2 = 5K$ where K, n are positive integers.	
	For $n = 1$, $LHS = 13 \times 6^1 + 2 = 80$	
	$RHS = 5K = 5 \times 16 = 80$	I mark awarded for
	$\therefore S_n$ is true for $n=1$	partial correct solution
	Assume S_n is true for $n = k$	
	$\therefore S_k: 13 \times 6^k + 2 = 5K$	
	$S_{k+1} = 13 \times 6^{k+1} + 2$	
	$=13\times6^k\times6+2$	
	$= (13 \times 6^k) 6 + 2$	
	$=(5K-2)6+2$ (from $13\times6^k+2=5K$)	2 marks awarded for
	=30K-12+2	further partial correct
	=30K-10	solution
	=5(6K-2)	
	=5M where M is an integer,	
	since K is a positive integer	
	$\therefore S_n$ is true for $n = k + 1$	3 marks for complete
	Since S_n ius true for $n=1$, it is true for $n=2$,	correct solution
	: it is true for $n = 3$, and so on	
	$\therefore S_n$ is true for all positive integers.	
P7	(b) $\frac{d(xe^{\sin x})}{dx} = xe^{\sin x}.\cos x + e^{\sin x}.1$	I mark awarded for partial correct solution
1,	$= e^{\sin x} \left(x \cos x + 1 \right)$	2 marks for complete correct solution
Н8	(c) $A = \int_{1}^{\pi} \left(\sin 2x - \frac{4x}{\pi} \right) dx$	l mark awarded for partial correct solution
	$= \left[\frac{-\cos 2x}{2} - \frac{4x^2}{2\pi} \right]_0^{\frac{\pi}{4}}$	2 marks for complete correct solution
	$= \left[\frac{-\cos 2x}{2} - \frac{2x^2}{\pi} \right]_0^{\frac{\pi}{4}}$	

Н8	$= \left(\frac{-\cos 2\left(\frac{\pi}{4}\right)}{2} - \frac{2\left(\frac{\pi}{4}\right)^{2}}{\pi}\right) - \left(\frac{-1}{2} - 0\right)$ $= 0 - \frac{\pi}{8} + \frac{1}{2}$ $= \frac{1}{2} - \frac{\pi}{8}$ (d) $y = \log_{e} x, e^{y} = x, x^{2} = e^{2y}$ $V = \pi \int_{0}^{\pi} x^{2} dy$ $= \pi \int_{0}^{\pi} e^{2y} dy$ $= \pi \left[\frac{1}{2} e^{2y}\right]_{0}^{3}$ $= \pi \left\{\left(\frac{1}{2} e^{2(3)}\right) - \frac{1}{2} e^{2(0)}\right\}$ $= \frac{1}{2} \pi (e^{6} - 1)$	1 mark awarded for partial correct solution 2 marks for complete correct solution
не6	(e) $u = \sqrt{x} = x^{\frac{1}{2}}$ $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$ $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$ $du = \frac{1}{2\sqrt{x}}dx$ $2du = \frac{1}{2}dx$	1 mark awarded for partial correct solution 2 marks awarded for further partial correct solution
	$2du = \frac{1}{\sqrt{x}} dx$ When $x = 0, u = 0$ $x = 3, u = \sqrt{3}$ $\therefore \int_{0}^{2} \frac{dx}{\sqrt{x(1+x)}} = \int_{0}^{\sqrt{3}} \frac{2du}{1+u^{2}}$ $= 2\left[\tan^{-1} u\right]_{0}^{\sqrt{5}}$ $= 2\left(\tan^{-1} \sqrt{3} - \tan^{-1} 0\right)$ $= 2 \times \frac{\pi}{3}$ $= \frac{2\pi}{3}$	3 marks for complete correct solution

Year 12 Question N	Mathematics Extension 1	HSC Trial 2009
Outcomes HE4 uses	No. 6 Solutions and Marking Guidelines Addressed in this Question: the relationship between functions, inverse functions and their varives	
Outcome	Solutions	Marking Guidelines
HE4 (a)		2 marks
(b)	Domain: $-\frac{1}{3} \le x \le \frac{1}{3}$ Range: $-\pi \le y \le \pi$	3 marks Correct solution (All 3 components correct) marks Substantial progress towards solution mark Partial progress towards solution
(c)	$\frac{dy}{dx} = \frac{-1}{\sqrt{1 - \left(\frac{1}{x}\right)^2}} \times \frac{-1}{x^2}$ $= \frac{1}{x^2 \sqrt{\frac{x^2 - 1}{x^2}}}$ $= \frac{1}{x\sqrt{x^2 - 1}}$	2 marks Correct solution 1 mark Substantial progress.
	(i) $f'(x) = -1(e^{-x} + e^{x}) = -1\left(\frac{1}{e^{x}} + e^{x}\right)$ As $e^{x} > 0$ for all values of x, then the expression inside the brackets is always positive. Multiplication by -1 gives a negative derivative for all values of x. This means that $f(x)$ is decreasing for all values of x.	Correct derivative as well as indicating the negative derivative for all values of x.

(ii) $f^{-1}(x)$: $x = e^{-y} - e^y = \frac{1}{e^y} - e^y$ $\rightarrow e^{2y} + xe^y - 1 = 0$ Using quadratic formula: $e^y = \frac{-x \pm \sqrt{x^2 + 4}}{2}$ For all values of x , $x < \sqrt{x^2 + 4}$, $\therefore -x + \sqrt{x^2 + 4} > 0$ But $-x - \sqrt{x^2 + 4} < 0$ for all values of x Therefore only solution is $e^y = \frac{-x + \sqrt{x^2 + 4}}{2}$ And given solution follows from this assertion.	Correct solution, including justification of positive and negative values of e. (You can't just assume that I solution will be negative. It's not always true for a quadratic.) Substantial progress towards solution Partial progress towards solution
(iii) Solution is found by substituting $x = 6$ into the solution given for $f'(x)$ in part (ii). Calculator answer = -1.82	1 mark • Correct solution.

	Year 12 Mathematics Extension 1 Task 4 2009 Trial	risc
uestion No. 7	Solutions and Marking Guidelines	
utcomes Addressed	in this Question	rohlems
5:applies appropriate	techniques from the study of geometry and trigonometry to solve p	i doncti i
8:uses techniques of	integration to calculate areas and volumes	Marking Guidelines
utcome	Solutions	2 marks: Fully correct solution
Q7(a)(i)		1 mark: Uses double angle result
	$\cos 2x = 2\cos^2 x - 1$	for cos 2x and integrates.
HS	ī	
	$\cos^2 x = \frac{1}{2}(\cos 2x + 1)$	
	2 '	
	$\int_{1}^{\frac{\pi}{4}} \cos^{2}x dx = \frac{1}{2} \int_{1}^{\frac{\pi}{4}} (\cos 2x + 1) dx$	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	$\int \cos x dx = \frac{1}{2} \int \cos x dx + i \int dx$	
	, , , , , , , , , , , , , , , , , , ,	1
	$=\frac{1}{2}\left[\frac{1}{2}\sin 2x + x\right]^{\frac{2}{4}}$	
	$=\frac{1}{2}\left[-\sin 2x + x\right]$	
	± (-)a	į
	$=\frac{1}{2}\left\{\frac{1}{2}\sin{\frac{\pi}{2}}+\frac{\pi}{4}\right\}$	
	$=\frac{1}{2}\left(\frac{-\sin(-\frac{\pi}{2})}{2}\right)^{\frac{\pi}{4}}$	
	. (,)	
	$=\frac{1}{2}\left\{\frac{1}{2}+\frac{\pi}{4}\right\}$	
	2 (2 ' 4)	
	π±?	
	$\frac{\pi+2}{8}$	
	8	
	***************************************	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Q7(a)(ii)		
	$y = \cos x + \sec x$	3 marks Fully correct solution.
Н8	$y^2 = \cos^2 x + \sec^2 x + 2$	2 marks
	y = cos x (see x) 2	Obtains correct simplified
	***	expression for volume before
	$V = \pi \int_{0}^{\pi} y^{2} dx$	substitution of limits
		I mark
	x <u>x</u>	Obtains correct simplified expression for volume before
-	(2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	integration.
	$= \pi \int_{0}^{\frac{\pi}{4}} \cos^{2} x dx + \pi \int_{0}^{\frac{\pi}{4}} (\sec^{2} x + 2) dx$	integration.
į		
	$=\pi \frac{\pi+2}{9} + \pi \cdot \left[\tan x + 2x\right]_0^{\frac{\pi}{4}}$	
	27. 8 , 7. [200 20]	
	$(\pi + 2 \cdot \pi)$	1
	$=\pi\left\{\frac{\pi+2}{8}+1+\frac{\pi}{2}\right\}$	
	(8 2)	· ·
	$=\pi\left\{\frac{\pi+2+8+4\pi}{8}\right\}$	
	$=\pi$	
	- / >	
	$=\frac{5\pi\left(\pi+2\right)}{2}$	
	- 8	***
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
07(1)(0)		2 marks: Correct results for
Q7(b)(i) H5	TONG TO OM	both OM and MT.
113	In $\triangle TOM$, $\sin \theta = \frac{OM}{I}$	I mark: Correct result for or
	$OM = l \sin \theta$	of OM or MT
ł	Similarly, $MT = l \cos \theta$	1
ł		***************************************
,	Th. /	
(ii)	In $\triangle PTM$, $\tan \alpha = \frac{TM}{PM}$	2 marks: Justification of
\/		result.
	α , $l\cos\theta$	1 mark: Sufficient progress
	$PM = \frac{l \cos \theta}{\tan \alpha}$	towards result
	$= l \cos \theta \cot \alpha$	
	. =10050 cota	
. 1	•	1
· ·		
-		

(iii)	Now in $\triangle OPM$, $PM^2 = OP^2 + OM^3$ $l^2 \cos \theta^2 \cot^2 \alpha = d^2 + l^2 \sin^2 \theta$	2 marks: Justification of result. 1 mark: Sufficient progress towards result
	$l^2 \cos \theta^2 \cot^2 \alpha - l^2 \sin^2 \theta = d^2$	1000111
	$l^2\left\{\cos^2\theta\cot^2\alpha-\sin^2\theta\right\}=d^2$	
	$I^2 = \frac{d^2}{\left\{\cos^2\theta \cot^2\alpha - \sin^2\theta\right\}}$	
	$I = \frac{1}{\left\{\cos^2\theta\cot^2\alpha - \sin^2\theta\right\}}$	
	25 ²	I mark: Correct solution
(iv)	$f^2 = \frac{25^2}{\left\{\cos^2 20 \cot^2 24 - \sin^2 20\right\}}$	
	I = 12m	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
announce charter		
		and the second s